Preparation for the Final.

Below you can find a list of definitions, axioms (well, an axiom), theorems and (counter-)examples that you need to know for the Final. More precisely, for in-class part of the Final, you will be given several (tentatively, ten to twenty) items from this list to formulate. Note that it won't have to be word-by-word citation, but whatever you write will need to be (a) correct (as in not a false statement), (b) easily equivalent to the textbook/lectures version.

On in-class part of the Final, you will *not* be asked to provide any proofs.

Knowledge of proofs of statements on this list is required for the take-home part of the Final.

In the list below,

- \odot marks definitions;
- \Box marks theorems and statements;

 \triangleright marks (counter-)examples that you need to know off-hand.

Note that there may be corrections to this list until Friday, Dec 11.

Preliminaries.

- ⊙ Sets, set-theoretic operations, functions, inverse function, composition.
- \odot Injections, surjections, bijections.
- $\odot\,$ Finite, infinite sets. Denumerable (countably infinite), countable, uncountable sets.
- \Box Countability of \mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z}^n , \mathbb{Q} .
- \Box Cantor's Theorem. Uncountability of \mathbb{R} .

Properties of \mathbb{R} .

- $\odot\,$ Bounded, bounded above, bounded below subsets of $\mathbb R.$
- \odot Upper bound, lower bound of a subset of \mathbb{R} .
- \odot Least upper bound (= exact upper bound = supremum) of a subset of \mathbb{R} .
- \odot Greatest lower bound (= exact lower bound = infimum) of a subset of \mathbb{R} .
- \odot Completeness property of \mathbb{R} (= supremum property of \mathbb{R}).
- \Box Archimedean property of \mathbb{R} .
- \Box Nested intervals property.
- \Box The density theorem.

Limits of Sequences.

- \odot Sequence of real numbers (= sequence in \mathbb{R}).
- \odot Limit of a sequence in \mathbb{R} , convergent/divergent sequence.
- \Box Uniqueness of limit of a sequence.
- $\odot\,$ Tail of a sequence.
- $\odot\,$ Bounded sequence.

- \Box Boundedness of a convergent sequence.
- \triangleright Bounded but divergent sequence.
- \Box Arithmetic properties of limits of sequences (Theorem 3.2.3).
- \triangleright Divergent sequences A, B such that A + B converges.
- \Box Order properties of limits of sequences (Theorems 3.2.4, 3.2.5).
- \triangleright Sequences $(a_n), (b_n)$ with $a_n > b_n$ for all $n \in \mathbb{N}$, but $\lim(a_n) = \lim(b_n)$.
- \Box Squeeze theorem for sequences.
- □ Increasing, strictly increasing, decreasing, strictly decreasing, monotone sequence.
- \Box Monotone convergence theorem.
- $\odot\,$ Euler's number e.
- \Box Square root as a limit of a sequence.
- $\odot\,$ Subsequence of a sequence.
- $\hfill\square$ Bolzano–Weierstrass theorem.
- $\odot\,$ Cauchy sequence.
- \Box Cauchy criterion.
- Sequence that tends to $+\infty$, sequence that tends to $-\infty$, properly divergent sequence.
- $\odot\,$ Sum of a series. Correspondence between infinite series and sequences.
- $\hfill\square$ *n*-th term test.

Limits of Functions.

- \odot Cluster point of a subset of \mathbb{R} .
- $\odot\,$ Limit of a function.
- \Box Uniqueness of limit of a function.
- \Box Sequential criterion for limit of a function.
- $\odot\,$ Function bounded a neighborhood.
- $\hfill\square$ Local boundedness of a function that has a limit.
- $\,\vartriangleright\,$ Bounded function that does not have a limit at 0.
- \Box Arithmetic properties of limits of functions (Theorem 4.2.4).
- \triangleright Functions f, g that don't have a limit at some point $c \in \mathbb{R}$, but f + g does.
- \Box Order properties of limits of functions (Theorem 4.2.6).
- \triangleright Functions f, g such that for all x in their domain, f > g, but at some point $c, \lim_{x \to c} f = \lim_{x \to c} g.$
- $\Box\,$ Squeeze theorem for limits of functions.
- \Box Local separation from zero (Theorem 4.2.9).
- $\odot\,$ Infinite limit of a function, limit of a function at infinity, infinite limit of a function at infinity.

 \odot One-sided limits.

Continuous Functions.

- $\odot\,$ Function, continuous at a point. Function, discontinuous at a point.
- \Box Criterion for continuity in terms of neighborhoods (Theorem 5.1.2).
- \Box Sequential criterion for continuity.
- \Box Sequential criterion for discontinuity.
- \odot Function, continuous on a subset of \mathbb{R} .
- ▷ Function, discontinuous everywhere (for example, Dirichlet's function).
- ▷ Function, continuous at irrational numbers and discontinuous at rational numbers (for example, Thomae's function).
- \Box Arithmetic properties of continuous functions (Theorem 5.2.1).
- \triangleright Functions f, g discontinuous at 0 such that f + g is continuous at 0.
- \Box Composition of continuous functions (at a point and on a set).
- \Box Boundedness Theorem.
- \triangleright Bounded but discontinuous (at least at one point) function.
- \triangleright Function continuous but unbounded on an open interval.
- ⊙ Absolute (= global) maximum of a function on a set, point of absolute maximum. Absolute minimum of a function on a set, point of absolute minimum.
- \Box Maximum–Minimum Theorem.
- \triangleright Function f continuous and bounded on an open interval such that that f has neither maximum nor minimum value.
- $\hfill\square$ Location of roots theorem, Bolzano's intermediate value theorem.
- \Box Preservation of closed intervals. Preservation of intervals.
- \odot Increasing, strictly increasing, decreasing, strictly decreasing, monotone functions.
- $\odot\,$ Jump of a monotone function.
- \Box Continuity criterion of monotone functions (Theorem 5.6.3).
- \Box Continuous inverse theorem. Continuity of *n*th root function.
- \Box Definition and basic properties of the rational power function $x^r, r \in \mathbb{Q}$.
- \odot Function, uniformly continuous on a subset of \mathbb{R} .
- \Box Uniform continuity theorem.

Differentiation.

- \odot Derivative of a function at a point. Function, differentiable at a point. (Three definitions: limit of ratio, Caratheodory's, linear approximation.)
- \Box Continuity of a differentiable function.
- \triangleright Function, continuous but not differentiable at x = 0.
- \triangleright Function, differentiable on \mathbb{R} , whose derivative is not continuous at 0.

- \triangleright Function, differentiable on [-1, 1], whose derivative is not bounded on [-1, 1].
- \Box Arithmetic properties of derivative.
- \Box Chain rule.
- \Box Derivative of inverse function (inverse function theorem).
- \Box Interior extremum theorem.
- $\Box\,$ Rolle's theorem.
- $\Box\,$ Mean value theorem.
- \Box First derivative test for extrema (Theorem 6.2.8).
- \Box Criterion for a differentiable function to be increasing/decreasing/constant on an interval (Theorems 6.2.5, 6.2.7).
- $\odot~n{\rm th}$ Taylor polynomial of a function.
- $\hfill\square$ Taylor's theorem.
- \Box *n*th derivative test for extrema (Theorem 6.4.4).
- \Box nth Taylor's polynomial at zero for $(1 + x)^{\alpha}$ ($\alpha \in \mathbb{R}$), e^x , $\ln(1 + x)$, $\sin x$, $\cos x$.
- \Box Newton's Method for approximating a zero of a function. Recursively defined sequence converging to $\sqrt{2}.$

The Riemann Integral.

- $\odot\,$ Partition, tagged partition, Riemann sum.
- $\odot\,$ Riemann integrable function, Riemann integral.
- $\,\triangleright\,$ Bounded but not a Riemann integrable function.
- □ Arithmetic and order properties of Riemann integral (linearity and monotonicity).
- $\hfill\square$ Boundedness theorem for Riemann integrable function.
- $\hfill\square$ Riemann integrability of a continuous function, monotone function.
- \Box Interval additivity theorem (proof not required).
- \Box The fundamental theorem of calculus (first form).
- \odot Indefinite integral, antiderivative.
- \Box The fundamental theorem of calculus (second form).
- $\hfill\square$ Derivative of an indefinite integral of a continuous function.
- \Box Substitution theorem.
- \Box Definition and basic properties of the logarithmic, exponential functions.
- \Box Definition and basic properties of the power function.
- \Box Definition and basic properties of sine and cosine. (If covered on 12/10.)

4